Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L.

نویسندگان

  • Parag P Shah
  • Michael C Myers
  • Mary Pat Beavers
  • Jeremy E Purvis
  • Huiyan Jing
  • Heather J Grieser
  • Elizabeth R Sharlow
  • Andrew D Napper
  • Donna M Huryn
  • Barry S Cooperman
  • Amos B Smith
  • Scott L Diamond
چکیده

A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC(50) of 56 nM, was developed after a 57,821-compound screen of the National Institutes of Health Molecular Libraries Small Molecule Repository. After a 4-h preincubation with cathepsin L, this compound became even more potent, demonstrating an IC(50) of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were k(on) = 24,000 M(-1)s(-1) and k(off) = 2.2 x 10(-5) s(-1) (K(i) = 0.89 nM). Molecular docking studies were undertaken using the experimentally derived X-ray crystal structure of papain/CLIK-148 (1cvz. pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. In addition, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC(50) of 15.4 microM and inhibited Leishmania major with an IC(50) of 12.5 microM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Group of Imidazole Derivatives as Atypical Selective Cyclooxygenase-2 Inhibitors: Design, Synthesis and Biological Evaluation

In this study, a new series of 5-substituted 1-benzyl-2-(methylsulfonyl)-1-H-imidazolewith atypical structure-activity relationship was designed, synthesized, and biologicalevaluated as selective cyclooxygenase-2 inhibitors. Docking studies revealed that althoughthe pharmacophoric substitute of the compound 5b, methylsulfonyl group, has been directlyattached to the central ring, it is in the sa...

متن کامل

Novel Group of Imidazole Derivatives as Atypical Selective Cyclooxygenase-2 Inhibitors: Design, Synthesis and Biological Evaluation

In this study, a new series of 5-substituted 1-benzyl-2-(methylsulfonyl)-1-H-imidazolewith atypical structure-activity relationship was designed, synthesized, and biologicalevaluated as selective cyclooxygenase-2 inhibitors. Docking studies revealed that althoughthe pharmacophoric substitute of the compound 5b, methylsulfonyl group, has been directlyattached to the central ring, it is in the sa...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Design, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors

As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...

متن کامل

Design and Synthesis of Novel N1-(Phenoxyethyl) Theobromine Derivatives and Evaluation of Their Cytotoxicity by in-vitro Method with Molecular Docking Study: A Laboratory Study

Background and Objectives: Cancer, one of the global health problems, has been introduced as one of the main death causes worldwide. Xanthine derivatives have been identified as effective compounds for prevention and treatment of cancer. In this study, a series of novel phenoxy ethyl theobromine derivatives were designed with N1 positioning and their cytotoxic activity was evaluated. Also, mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 2008